Estimation of glucose carbon recycling in children with glycogen storage disease: A 13C NMR study using [U-13C]glucose.

نویسندگان

  • B Kalderon
  • S H Korman
  • A Gutman
  • A Lapidot
چکیده

A stable isotope procedure to estimate hepatic glucose carbon recycling and thereby elucidate the mechanism by which glucose is produced in patients lacking glucose 6-phosphatase is described. A total of 10 studies was performed in children with glycogen storage disease type I (GSD-I) and type III (GSD-III) and control subjects. A primed dose-constant nasogastric infusion of D-[U-13C]glucose (greater than 99% 13C-enriched) or an infusion diluted with nonlabeled glucose solution was administered following different periods of fasting. Hepatic glucose carbon recycling was estimated from 13C NMR spectra. The recycling parameters were derived from plasma beta-glucose C-1 splitting pattern, doublet/singlet values of plasma glucose C-1 in comparison to doublet/singlet values of known mixtures of [U-13C]glucose and unlabeled glucose as a function of 13C enrichment of glucose C-1. The fractional glucose C-1 enrichment of plasma glucose samples was analyzed by 1H NMR spectroscopy and confirmed by gas chromatography/mass spectroscopy. The values obtained for GSD-I patients coincided with the standard [U-13C]glucose dilution curve. These results indicate that the plasma glucose of GSD-I subjects comprises only a mixture of 99% 13C-enriched D-[U-13C]glucose and unlabeled glucose but lacks any recycled glucose. Significantly different glucose carbon recycling values were obtained for two GSD-III patients in comparison to GSD-I patients. Our results eliminate a mechanism for glucose production in GSD-I children involving gluconeogenesis. However, glucose release by amylo-1,6-glucosidase activity would result in endogenous glucose production of non-13C-labeled and nonrecycled glucose carbon, as was found in this study. In GSD-III patients gluconeogenesis is suggested as the major route for endogenous glucose synthesis. The contribution of the triose-phosphate pathway in these patients has been determined. The significant difference of the glucose C-1 splitting pattern in plasma GSD-III and control subjects, in comparison to GSD-I plasma, can be used as a parameter for estimating glucose recycling. This approach can be developed as a noninvasive diagnostic test for inborn enzymatic defects involving gluconeogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of fructose metabolic pathways in normal and fructose-intolerant children: a 13C NMR study using [U-13C]fructose.

An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-[U-13C]fructose was given nasogastrically to control and to HFI children. Hepat...

متن کامل

Fluxomics of the Eastern Oyster for Environmental Stress Studies

The metabolism of 2-13C/15N-glycine and U-13C-glucose was determined in four tissue blocks (adductor muscle, stomach and digestive gland, mantle, and gills) of the Eastern oyster (Crassostrea virginica) using proton (1H) and carbon-13 (13C) nuclear magnetic resonance (NMR) spectroscopy. The oysters were treated in aerated seawater with three treatments (5.5 mM U-13C-glucose, 2.7 mM 2-13C/15N-gl...

متن کامل

Direct, noninvasive measurement of brain glycogen metabolism in humans.

The concentration and metabolism of the primary carbohydrate store in the brain, glycogen, is unknown in the conscious human brain. This study reports the first direct detection and measurement of glycogen metabolism in the human brain, which was achieved using localized 13C NMR spectroscopy. To enhance the NMR signal, the isotopic enrichment of the glucosyl moieties was increased by administra...

متن کامل

Integration of [U-13C]glucose and 2H2O for quantification of hepatic glucose production and gluconeogenesis.

Glucose metabolism in five healthy subjects fasted for 16 h was measured with a combination of [U-13C]glucose and 2H2O tracers. Phenylbutyric acid was also provided to sample hepatic glutamine for the presence of 13C-isotopomers derived from the incorporation of [U-13C]glucose products into the hepatic Krebs cycle. Glucose production (GP) was quantified by 13C NMR analysis of the monoacetone de...

متن کامل

Effect of chronic hypoglycaemia on glucose concentration and glycogen content in rat brain: A localized 13C NMR study.

While chronic hypoglycaemia has been reported to increase unidirectional glucose transport across the blood-brain barrier (BBB) and to increase GLUT1 expression at the endothelium, the effect on steady-state brain d-glucose and brain glycogen content is currently unknown. Brain glucose and glycogen concentrations were directly measured in vivo using localized 13C magnetic resonance spectroscopy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 86 12  شماره 

صفحات  -

تاریخ انتشار 1989